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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)

UNITS OF MEASUPEMENT

U. S. customary units of measurement used in this report can be con-

verted to metric (SI) units as follows:

Multiply By To Obtain

feet 0.3048 metres

miles (U, S. statute) 1.609344 kilometres

3
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VAHM -A VERTICALLY AVERAGED HYDRODYNAMIIC MODEL

USING BOUNDARY-FITTED COORDINATES

PART I: INTRODUCTION

1. The mathematical modeling of the hydrodynamics of a body of

water plus the transport and disp. 'rsion of a conservative constituent

within that body involves the solution of a set of partial differential

equations expressing the conservation of mass, momentum, and energy of

the flow field along with a transport equation for the constituent.

These equations involve derivatives with respect to time as well as three

spatial dimensions, However, a simplification that is often made in

treating relatively shallow bodies of water that are well mixed over the

depth is to vertically average the three-dimensional (3D)) equations to

yield a two-dimensional (2D) set for nearly horizontal flows.

Numerical Techniques

2. Since the governing equations are nonlinear, analytic solutions

in general cannot be found and one is forced to resort to numerical tech-

niques to obtain solutions. The two most common such techniques are the

finite difference method (FDM) and the finite element method (FEM).

There are, of course, both advantages and disadvantages to each of these

approaches.

3. Perhaps the most often quoted advantage of the finite element

method is that with this approach physical boundaries coincide with

computational net points. Therý'fore, the modeling of flow within an

irregular domain can be more a&curately handled than with the normal

F. finite difference method where the approach is to construct a rectangular

grid over the domain, which forces the boundaries to be represented in

a "stair stepped" fashion. However, a disadvantage of finite element

methods is that they involve dense matrices ratheiL than the sparse ma-

trices involved in finite difference methods. This results in more

4
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computational time being required in a finite element model having

the same number of mesh points as a finite difference model. An ad-

ditional disadvantage is that the finite element method is more cumber-

some to code into a computer model than the finite difference method.

This can be a problem not only during the development of the model but

can also increase the level of effort required during later model

modifications.

Boundary-Fitted Coordinates Concept

4. Accepting that the finite difference method possesses an ad-

vantage in simplicity and perhaps computational costs, a logical question

is whether or not one can develop ways to circiumvent the major disad-

V vantage of having to represent irregular boundaries in a "stair stepped"

fashion. One such technique which has been developed by Thompson,

et al. 1,2,3 involves the use of boundary-fitted coordinates. Thompson's

F method generates curvilinear coordinates as the solution of two elliptic

partial differential equations with Dirichlet boundary conditions, one

tribution of the other specified along the boundaries. However, the

numerical computations to solve the governing flow equations, as well as

computations for the solution of the coordinate system, are not made in
the physical curvilinear coordinate system but rather are made on a

rectangular grid with square mesh spacing.

Purpose and Scope

5. Since the early to mid 1960's, many finite difference, plus a

few finite element, computational models for vertically averaged flows

have been developed. 4567The purpose of this report is to describe

the development of a new vertically averaged hydrodynamic model which is

fully coupled with the water salinity through its influence on the water

density. The finite difference method of solution is employed but,

unlike the previously developed models, solutions are obtained on a

5 I
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boundary-fitted coordinate system to provide an accurate representation

of boundary geometry.

6. The first part of the report summarizes Thompson's method for

computing boundary-titted coordinates. A portion of this discussion has

been taken from a previous Independent Laboratory Inhouse Research (ILIR)

8report by Johnson and Thompson. The second part of the report present~s

the basic equations to be solved and a discussion of their transformation

inl a fully conservative form from the physical plane to a transformed

rec.tangular plane, wherein computations are made. The third .art then

deals with the numerical aspects of the solution scheme and presents the

difference equations to be solved, along with associated boundary con-

ditions. The final part of the report describes the computer model as

it is developed to date and presents results from three applications

that demonstrate, in a qualitative sense, that the model is behaving

properly.
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PART II: ASPECTS OF GENERATING BOUNDARY-FITTED
COORDINATE SYSTEMS

7. Thompson's work on the generation of boundary-fitted coordi-

nates c:in be found in References 1, 2, and 3. The discussion below is a

summary of the more important theoretical aspects of the subject.

The Basic Idea

8. Suppose one is interested in solving a differential system

involving two concentric circles, such as shown in Figure 1, where

r = constant = on the inner circle and r = constant = n2 on the

outer circle and 0 varies monotonically over the same range over both

the inner and outer bound3ries, i.e., 0° to 3600. I
9. A cylindrical coordinate system is the obvious choice since a

coordinate line, i.e., a line of constant radius, coincides with each

boundary. If one now pulls the interior region between the two circles

apart at 6 = 00 (or 0 = 3600) and folds outward, it is easy to visu-

alize the region D1 becoming the rectangular region D2

10. The general boundary-fitted system is completely analogous

to the system discussed above. In Figure 2 the curvilinear coordinate,

q , is defined to be constant on the inner boundary in the same way that

the curvilinear coordinate, r , is defined to be constant on the inner

circle in the cylindrical coordinate system. Similarly, q is defined

to be constant at a different value on the outer boundary. The other

curvilinear coordinate, • , is defined to vary monotonically over the

same range on both the inner and outer boundaries, as the curvilinear

coordinate, 0 , varies from 0 to 2n around both the inner and outer

circles in cylindrical coordinates. It would be just as meaningless to

have a different range for t on the inner and outer boundaries as it.

would be to have 0 increase by something other than 27T around one of

the circles in cylindrical coordinates. It is this fact that • has the

same range on both boundaries that causes the transformed field to be

rectangular. Note that the actual values of the coordinates, i and

7Ii



are irrelevant, in the same way that r and 0 may be expressed in

different units in cylindrical coordinates.

11. Now that the values of the coordinates, n and • , have been
completely specified on all the boundaries of a closed field, it remains

to define the values in the interior of the field in terms of these

boundary values. Such a task immediately calls to mind elliptic partial

differential equations, since the solution of such an equation is com-

p)letely defined in the interior of a region by its values on the boundary

of the region. Thus if the coordinates, t and n , are taken as the

solutions of any two elliptic partial differential equations, uay

L(t) : 0 , D(n) = 0 , where L and D represent elliptic operators,

tnen • and q will be determined at each point in the interior of

the field by the specified values on the boundary. One condition

must be put on the elliptic system chosen since the same pair of values

(•,•) must not occur at more than one point in the field or the co-

ordinate system will be ambiguous. This condition can be met by

choosing elliptic partial differential equations exhibiting extremum

principles that preclude the occurrence oc extrema in the interior of

the field.

Mathematical Development

12. From the discussion above, a logical choice of the elliptic

generating system is Poisson's equation. Thus, based upon Figure 2, the

basic problem is to solve

txx + tyy =

xx onyy

with boundary conditions,

Wkk

.. 8



S= •(xy) on F1

n constant = n on F1  (
(2)

=2 (x,y) on F2

n = constant = n on r

Tlie arbitrary curve joining F1  and F2  in the physical plane specifies

a branch cut for the multiple-valued function, t(x,y) . Thus the values

of the coordinate functions x(t,n) and y(t,n) are equal along F3

and r , and these functions and their derivatives are continuous from

F3 to F4 Therefore boundary conditions are neither required nor

allowed ")n F3  and F 4 "

13. The functions P aad Q may be chosen to cause the coordi-

nate lines to concentrate as desired. As discussed in Reference 1, 1
negative values of Q result in a superharmonic solution and cause n

lines to move toward the n-line having the lowest vaue of il , while

positive values have the opposite effect. Considering the t solution

to be superharmonic results in the interior of the • = constant lines

being rotated in a clockwise direction in the physical plane, whereas if

the t equation is subharmonic, i.e., P is positive, the lines are

rotated in the counterclockwise direction. i
14. The form of these functions incorporated by Thompson, 2 based I

upon much computer experimentation, is that of decaying exponentials.

For example, let Q be taken as

Q =-a exp (- din- oil)-

1~1where a and d are constants, and q i is some specified q-line.

This function reaches its maximum magnitude on the n i line and decays

away from that line on either side at a rate controlled by d

S9
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15. This function would cause O-lines to concentrate on one side

of the qri- 'ine and to move away from the other side. If, however, a

sign-changing function is incorporated so that

Q = - a sgn (q - ni) exp (- din - nil)

where sgn(x) is simply the siAn of x , the f-lines will concentrate

on both sides oC the i,-line. In a similar fashion, it is possible to

cause concentration of f.i-lines near a point (ti,0i) with the function

asgn (qi-r. exp[ - d j - + (l-n

Finally, concentration near more than one line and/or point is achieved

by writing Q as a sum of functions of the above form. In this case

the attraction amplitude a and the decay factor d may be differenit

for each line or point of attraction. The decay factor should be large

enough to cause the effects of each attraction line or point to be com-

fined essentially to its immediate vicinity. Thompson has found that

attraction amplitudes of 100 are moderate, 10 is weak and 1000 is fairly

strong. A decay factor of 1.0 causes the effects to be confined to

a few lines near the attraction source, while 0.1 gives a fairly wide-

s;pread effect. Control of t-lines is accomplished by an analogous

form of the function P . Such control is useful to improve grid spacing

and configuration when complicated geometries are involved.

16. Since all numerical computations are to be performed in the

rectangular transformed plane, it is necessary to interchange the de-

pendent and independent variables in Equation 1. Using the relations

x= y/J

ty _ -no/ J

rix Y/j
Oy= -x•

0 x

10



2

nyy ynrl x ~ f .yyf ( l J

r1 Y =-( ry A t - + nJ)/n

equation 1 becomes

aix - xt - YX nr + J 2 (Px t + Qx) =l 0

(3a)

Oyue 2py 0 + Yynn + J2(Pyt + Qy1 1) =01

a x2 +y2n i

f3x~x + yty I

Y = Xt+ yt(3b) I

J = Jacobian of the transformation =x~y x~y

with the transformed boundary conditions



x = f1 (tm 1  on

y = gl(t,nl) on r*

x = f 2 (to 2 ) on (4

y = g2 (t,r12 ) on 2*

Again considering Figure 2, the functions f 1(tl) I g1 (,rl) I
f 2(t,%) , and g2 (,%, 2 ) are specified by the known shape of the con-

tours II and r2 and the specified distribution of t thereon. Al-

though the new system of equations is more complex than the original

system, the boundary conditions are specified on straight boundaries and

the coordinate spacing in the transformed plane is uniform. Computa-

tionally, these advantages far outweigh any disadvantages resulting from

the extra complexity of the equations to be solved.

17. The boundary-fitted coordinate system so generated has a

constant f-line coincident with each boundary in the physical plane.

The t-lines may be spaced in any manner desired around the boundaries

by specification of x,y at the equispaced t-points on the F* and

U'* lines of the transformed plane.
2 18. The rectangular transformed grid is set up to be the size

desired for a particular problem. Since the values of t and n are

meaningless in the transformed plane, the n lines are assumed to run

from 1 to the number of n lines desired in the physical plane. Like-

wise, the t lines are numbered 1 to the number specified on the bound-

aries of the physical plane. The grid spacing in both the t and r)

directions of the transformed plane is taken as unity. Second order

central difference expressions are used in Thompson's coordinate genera-
2tion code, TOMCAT, to approximate all derivatives in Equations 3a and

3b. The resulting set of nonlinear difference equations, two for each

point, are solved in TOMCAT by accelerated Gauss-Seidel (SOR) iteration

using overrelaxation. Some discussion of this technique is presented in

Reference 2.

12



19. The same procedure may be extended to regions that are more

than doubly connected, i.e. have more than two closed boundaries, or

equivalently, more than one body within a singlký outer body. A river

reach containing more than one island wouli be an example.

Types of Boundary-Fitted Coordinate Systemsa

20. Previous discussion of the generation oi boundary-fitted

coordinates has centered around the idea of' using branch cuts to reduce

multiply connected regions to simply connected ones in the transformed

plane. Thompson's TOMCAT code employs such branch cuts. The other type

of coordinate system transformation available leaves the multiplicity of

the region unchanged. In this case, bodies in the interior of the

physical field are transformed to rectangular slabs or even slits in the4

transformed plane. In the case of slits, the physical coordinates and

solution variables generally have different values at points on the two

sides of the slit, even though such points are coincident in the trans-I. formed plane. This does not introduce any approximations, but simply

adds a little more bookkeeping to the code. Fields with more than one

body in the interior simply result in a like number of slabs and/or

L slits in the transformed plane.

21. Different types of transformation may be more appropriate for

different physical configurations. Generally, the slit/slab form is
more appropriate for channel-like physical configurations having bodies
in the interior, while the branch cut form works particularly well for

"unbounded"' regions involving external flow about bodies and for regions

having an outer boundary that forms a continuous circuit without pro-

nounced corners around the field. The slab is generally superior to the
slit unless the boundary has a sharp point. The case of a single channel

without any interior bodies would be the same in either form.

Data Required for Generation of Boundary -Fitted Coordinates

22. The basic input or data required to generate a boundary-fitted

13U
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coordinate system are the physical coordinates of points on the bound-

aries. This will be discussed in more detail in PART V in connection

with the applications presented.

Computer Time Required for Generation of
Boundary-Fitted Coordinates

23. The computing cost for generating a boundary-fitted coordinate -

siystem is trivial, Approximately 3 sec of CPU time on a CRAY I computer

were required to generate the coordinate system shown in FigurE 3. It

might be noted that no coordinate control was employed. The use of such

control would result in a slight increase in computational time.

14



PART III: BASIC HYDRODYNAMIC EQUATIONS

24. The Navier Stokes equations express the conservation of mass

and momentum of a flow field and are the basic governing equations for

the solution 'f any fluid dynamics problem. Written in tensor notation

these equations are

apu.()
Continuity: 1- 0 (5)

-. at azc.1

apu. 3(pu.u.) 8T..
Momentum- , " 2+B 2 pu + ax (6)

at 3x. +8-. ij k ax.

where

p = water density

t = time

u. = tensor notation for velocity

x. = tensor notation of spatial coordinate

gi = acceleration of gravity

iijk = cyclic tensor
0 . = Coriolis parameter

T. . = laminar stress tensor
p = molecular eddy viscosity

6ij = Kronecker delta

and where

au. au. au.
1 - 2

T. ax. ax ax. ijI

represents the viscous molecular stress arising as a result of the con-

tinuum approach. All symbols used are defined in Appendix A. It will

15
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be recalled from tensor theory that repeL-iled indicies imply a summation

and also that Cijk in the Coriolis term is the cyclic tensor defined

ais

I - for an even permutation of ijk

,ijk = -I - for an odd permutation of ijk

0 - otherwise

in addition, the Kronecker Delta, 6ij, is defined as

1-if i=j

6.. = 0 - otherwise
13

25. In addition to the above equations, a conservation of mass

equation must also be written for any constituent being transported.

Such an equation for the salinity becomes

as 3(suasas a(sui) \i ax.

Salinity: - + - (8)
-at ax. ax,

1

This equation states that the salinity can change as a result of advec-

tion by the flow field and molecular diffusion.

26. Since the salinity is coupled to the flow equations through

its influence on the density, one additional equation remains to be

written in order to close the system. An equation of state expressing

the density as a function of the temperature and salinity must be

employed.

Equation of State: p = p(T,s) (9)

With the closure of the system, there exists six equations to be solved

for the six unknowns% density -p , three velocity components -u,v,w ,

pressure -p , and salinity -s.

16



Time Averaging for Turbulent Flows

27. The above equations written with molecular values of viscosity

and diffusivity are only applicable in a practical sense to laminar flow

f4elds where the flow does not exhibit random irregular fluctuations in

time. However, most fluids in motion exhibit sach fluctuations and are

referred to as turbulent flows.

28. "ollowing Reynolds, the approach normally taken to make the

equations applicable to turbulent flows is to assume that the dependent

variables are composed of an average time-varying component plus a small

randomly varying component about the average value. This is illustrated

below.

- U!U,j

u/

Thus, one writes

U.(X,y,z,t) = (x,y,z,t) + ul(x.y,z,t)

where

t+At/2

u. = (x,y,z,t) dt
i At

t-At/2

17



and

t+At/2

tu(x,y,z,t) dt 0

t-At/2

u! '- deviation between instantaneous velocity and time-averaged

1 velocity

u. time-averaged velocityI

At = time step

With all the dependent variables written in the form above, substitution

into Equations 5, 6, and 8 and then integration over the time increment

At produces the same form (of the previous equations, but now written

with the time-averaged c x,.•o,,ea1.s as the dependent variables, plus the

additional terms

t+At/2

i At J uýu dt
At 2 j

ff

and

t+At/2

" 1 f st t dt

S~t-At/2 '

where s' deviation between instantaneous and time-averaged salinity.

29. The first term is referred to as the turbulent Reynolds stress,

since the high frequency turbulent fluctuations manifest themselves as

viscous stresses acting on the average component of flow. Using

Boussinesq's concept of eddy viscosity, the first term is written as

18



IA

t+At/2

__ f,-- uu d + (no summation over i)At 1. j 8j x.

t-At/2

In analogy with the laminar flow case, e.. is referred to as the

turbulent or eddy viscosity tensor.

30. In a similar fashion, the second term above, which arises

from the time averaging of the salinity equation, is commonly written as

t+At/2

1 asAt ul t ij axj

t.t-At/2

where A.. is called the "eddy diffusivity tensor" and s is the time-

averaged salinity.

be written equations commonly applied to turbulent flow problems can

now bewitnas

- pu i
Continuity: 3t = 0 (10)

Bpui a(puiu.) -

Momentum.; 8 + - I. i = - x. P
at 3x . ax,J I

au. ''+ [
"ijkji-Uk 3x ij + x - () x

19
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- asu. /
Salinity: Tt+ 17 Aij 8s (12)

~ ~T x. iiax.,

Equation of State: p = p(T,s) (13)

where

p = time-averaged water density

P = time-averaged pressure

and where the asstmiption has been made that the eddy coefficients are

much larger than the molecular values; i.e.,

.. >> PJ
i,]

A.. >> D..I,] ij

Depth Averaging for Nearly Horizontal Flow

32. A solution of the above set of equations constitutes a fully

time varying, three-dimensional model of the flow and salinity fields.

However, when modeling nearly horizontal flow in relatively shallow and

well-mixed water bodies the usual approach is to employ a spatial averag-

ing to yield a two-dimensional model.

33. The basic assumption in the spatial averaging of the three-

dimensional equations is that the dependent variables can be represented

by an average value over one or more of the spa ial coordinates plus

some small random deviation; e.g., the velocity would be written as

II
-- -•

U. = U. + u! (14)1 1 1

where
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x. +Ax /2

u f u. dx.

xi-Axi/2

xi+Ax i/2

l-- f u! dx. = 0
I.. J I I

x xi.-Axi/2

and

u. = time- and space-averaged velocity1

Ax. = spatial step1

ut = deviation betweep. time-averaged velocity and time- and space-
averaged velocity

In an x , y , z coordinate system (with x referring to the longi-

tudinal; y , the lateral; and z , the vertical), if i = 2 , the inte-

gration is over the width and a width-averaged model results. However,

if i = 3 , the integration is taken over the depth and a depth-averaged

model will result. Many depth-averaged models Pave been developed since
'5Leendertse s work, whereas laterally averaged models have only been

developed over the past five years or so. If the integration is per-

formed over the complete cross section, a one-dimensional model with

variations allowed only in the longitudinal direction results.

34. As was done in the time-averaging of the instantaneous equa-

tions, expressions such as Equation 14 are substituted into the turbulent

time-averaged equations to yield a set of equations with the time-

averaged and spatially averaged components of the flow and salinity as
dependent variables plus the additional terms

x .+Ax. /2

1 1

21

S[ 5l'.u dx.
Ax. J j 1

xi'-Axi/2
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and

x. +Ax /2

I-- u'u dx.
1 f

xi-Axi/2

As in the time-averaging case, these terms are normally approximated by

x .+Ax /I2

f u u!u '
x -Ax./2 13

and

x .+Ax /2

s'u! dx. A'. I
Ax. 1 1 13 ax.ixi-Axi/2

1 1

where g!.. and A!. are referred to as "eddy dispersion coefficients" by
9iJ iJ

Holley to distinguish them from the turbulent eddy diffusion coeffi-

cients ai'ising from the time averaging, and s is the time-averaged and

and spatially averaged salinity. .
35. The resulting spatially averaged equations take different

forms, depending upon whether the averaging is performed over the depth

or the width. For the depth averaged case, the equations below are

obtained. It should be noted that the Boussinesq approximation has been

made which removes the effect of density variations in all terms except

those multiplied by the acceleration of gravity.

Continuity: + a(uh) +c(vh) 0at 8x + ay

22
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x-momentum: c(hu) + 8(hu2 ) + ) _ h8P
at ax ayp

8•(hDxx 3'1 3 uD
+ 3 + n Y Ty)

ax ay

+I - + fhv (16)
S Bx x

y-momentum: (hv) + 3,huv) + ) h B
at 8x ay p 5y

a (hDy hv av

+ ax + ay

+ -- TB fhu (17)
v y

a a)
a(hs) hus a)vs +E

Salinity: at + ax + ay ax + ay (18)at -3x a y 8x BY

The equation of state relating the water density to the salinity and
water temperature (assumed constant) has been taken from Leendertse0

and is given as

p(s,T) = 1000 + ALO * PO (19)

where

AL = 1779.5 + 11.25T - 0.0745T2 
- (3.80 + 0.O1T)s

ALO = 0.6980

PO = 5890.0 + 38T - 0.375T2 + 3s

36. In the above equations the surface wind shear is
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"c 2
S gfT = /cCos a (20)s Po pa w

W

S 2 v sin a (21)SY Po avw

and the bottom shear is

"T = -pgu u v2 (22)
B

T~y gv u2 + v2/¢ (23)

Yi

rhie coriolis parameter, f ,is computed from

f =2w sin X (24)

et

where w =earth's angular velocity and X is the angle of latitude of ,
e

the center of the area being modeled.

37. n order to finalize the above system of equations it remains
to couple the salinity computations with those of the flow field. This

is accomplished in the f.-llowing manner. Assuming that the pressure is

hydrostatic,

3P

one can determine the pressure at any depth z from

" 83F dz =- pgdz

3zz
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where the coordinate system is

•] • ._ z O (x,y)

x

Integrating the above eq one obtains

P P a + f pgdz

z I

where Pa is the atmospheric pressure. Differentiating with respect to

the x-coordinate yields

3P+aax pgdz ~

As was done in the continuity and momentum equations above, one now

assumes that the pressure and density are composed of a depth averaged

i1 2

plu aInt uctating th aompeqonent oThersingsqaini hnitgae

h -LP a-hgP h2 (25)ax ax a x2 ax

25

zI

.4. -i
where~ ~ ~ ~ ~ ~~~~~~~~~d L6steamshrcpesr.Difrnitn ihrsett



Similarly,

8Yg a 8_y 21 yP (26)
h =9 h +p hgp + h2 9(6

ay y B~y 2 By

Substituting Equations 20-26 into equations 15-18 yields the final form

of the equations in cartesian coordinates.

Continuity: P + a(uh + a(vh) = 0 (27)at ax 8y

x-momentum: a(hu) + a(hug + (huv) h / +P +A2
at a x 'ay p 0  8x ax 2 8x/

3 (hDxx Lu 3 8 D 8u w

+ xh ax/i ayBypv 2
+ + y + o Pvw Cos a

-gu u2 + v 2 + fhv (28)

a(hv) a(huv) -(ahy-momentum: at + a77X + -- + __ + h_ 8Bt px y ax 3o gy 2 By

a h ah v
+_ax) + _ B + -Wc pv 2 sina

ax y op avw

- gv u + 2 fhu (29)

S(hs) a(hus) + 3(hvs) a a hEx ý a.x )Salinity: O--t- +x y = (30)y
a y ax (30

Equation of state: p = p(s,T) (31)
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38. As previously discussed, the above set of equations must now
be transformed into a (t,n) boundary-fitted coordinate system such that
(•,I) are the independent variables. The resulting set of equations will

then be solved in a transformed rectangular plane as discussed in PART II.

In order to accomplish the transformation, the following expressions de-

rived by Thompson 1 2 are utilized.

x -j[(Yn (fyn] (32)

fy UIX- (fx1 )t + (fxQ~] (33)

It should be noted that these expressions are written in a fully conserva-

tive form which should result in a more accurate solution in highly ir-

regular coordinate systems.

39. Using the above expressions and assuming that. the coordinate

system is time invariant, one can transform Equations 27-31 into the set

below. II
!I
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Transformed Equations

Continuity: + ~ uhir~ vhx)i +(vhx, uhy,) - (34)

x-Momentum: atb~) 1 u 2 llvx) + 2hx h

7_[~u -hUýx +o )hv -huY)

[p ( Payl), ~PaY&), -
0 fl

0

-~~~~ (uX)Y -(,h [(uyn) 
-Y)~)

+ ux ux x~ x + ( hD [ - ux

+. (up ] v~ w +v Cos a - u4 ,72/C2 + fllv (35)

y-Momentuni: a (h + [ (h2x- uY)(uv - h 2 )]

hp (Paxý), (PaX,) ] - 2. [ - (Oxr),

2

+OE) "0I') +(x

+ --y2 .("+r) - (vy4)T jYT)
28



•• r

+'-9- 2 P awsin • -g h (36)
,<+ h.,,°, r v.:,o, + hx, x

p aw

Saiiy 3(s [(husy -hvsx)+ (hvsx~ husy~)

(,)' - ( sn ( )
.) 

]

.t p[s(•,n),T] (38)

40. The above set of equations constitute the set for which a

numerical solution is sought on a rectangular grid with square grid

spacing (e.g., at - An - 1.0) . It remains, of course, to specify proper

boundary conditions along the sides of the rectangular grid. It is

obvious that the transformed equations are more complicated than the

original cartesian forms; however, the advantage of being able to make

computations on a rectangular grid far outweighs any disadvantage result-

ing from the more complicated set of equations.
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PART IV: NUMERICAL ASPECTS

41. In order to obtain a solution of the governing set of Equa-

tions 34-38, the method of finite differences is employed. There are

many different types of finite difference schemes that have been employed

in numerical solutions of partial differential equations. These schemes

range from fully explicit to fully implicit, with a combination of an

explicit-implicit scheme being employed in some cases, e.g., Edinger and

Buchak.1 A similar scheme is employed here. Basically, the computa-

tional cycle will consist of the following steps:

a. Solve for the water surface from the continuity equation
in a fully implicit fashion.

b. Using the most recent values of the water surface eleva-
tions, solve for the u and v velocity components from
the x and y momentum equations in an explicit fashion.

c. Solve for the salinity from the salt transport equation
in an explicit fashion.

d. Compute the density from the equation of state, using the
most recently computed salinity field.

e. Step forward in time and repeat the sequence.

I
Such a scheme as outlined above will have the stability criterion asso-

Sciated with the speed of a free surface gravity wave removed; although,

diffusive criteria as well as the Torrence condition associated with the

speed of a water particle remain. However, these criteria are not

normally overly restrictive.
'•iI

Computational Grid

42. The grid upon which Equations 34-38 are solved is rectangular

with a grid spacing of & -A n - 1. The u and v velocity compo-
nents are computed at the corners of each cell. with the water surface

SII 30
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elevation, salinity, and density computed at the center of a cell. Such

a grid is illustrated below.

- - I -I1 I

+ I 1- t +
u, v, (xy)

hps,(x Y)

The (x,y) coordinates are specified at the corners, the center, and also

at the midpoint of each side of a cell.

43. One might think of the above grid as a global grid. A local

grid consisting of 25 points surrounding the (ý,n) point at which compu-

tations are being made is utilized in writing the difference form of the

governing equations. This grid is as shown below when velocity computa-

tions are being made.
NWW NNNWNN NN NNNCNI: NN

WWNWNW 12- tl. 19II- 20_ EENENE

I- S

WW I 121W 131 141F. 16 I

swsw ' I• 3 14 ,•s

SSSWSW SS 5SUM66
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N .

With the above grid, when u and v are being computed at the point

labeled c , velocities are defined at points NWNW, NN, WW, NENE, EE,

SESE, SS, and SWSW, whereas the water surface and salinity are defined

at NW, NE, SE, and SW. When a value of one of the dependent variables

is needed at some point where the variable is not defined, an averaging

is performed, e.g., u(W) = [u(c) + u(WW))/2 .

44. Points in the local grid are assigned to their location iii

the global grid through functions of the form

IFCOR(L) - I + INFCOR(L)

JFCOR(L) = J + JNFCOR(L)

where the 25 values of INFCOR(L) are

-1 0 0 0 1

0-1 0 0 0

-1 0 0 0 1

0 -1 0 0 0

-1 0 0 0 1

and the values of JNFCOR(L) are

-1 0 -1 0 -1

0 -1 0 -1 0
0 0 0 0 0

0 0 0 0 0

+1 0 +1 0 +1

Thus, as an example, if one considers the computation for u at (5,5)

then the value of u(WW) in the local grid should correspond to the

value at (4,5) in the global grid. Using the expressions above, with

WW 11 from the local grid, one obtains

32
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u(WW) : u(IFCOR(WW) JFCOR(WW))

where

IFCOR(11) - 5 + INFCOR(11) = 5 - 1 - 4

JFCOR(11) - 5 + JNFCOR(11) - 5 + 0 - 5

therefore

u(WW) u(4,5)

Similar functions relate the (x,y) coordinates, salinity, and water

surface elevations in the local grid to their proper values in the

global grid. It should be noted that the grid system described above

was suggested by Thompson. 2

Difference Equations

45. The basic difference equations are developed using forward

differences for all time derivatives. Centered differences are used in

all spatial derivatives except in the convective terms where one has the

option in VAHM of requesting the use of either centered or a form of

Roache's second upwind differencing. Examples are presented below.

n+1 _ u

Forward: DC c

n rL n

E___ n n(C 4 E4 W

Centered:
n n

33
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+ 2 UW+

( ) UEUE - u E2 U UE + IUE UW -VWI
c . c 2 c

Upwind:

n - VNt 2 vs*jv + + 2vI v -2vs2 N 2 S 2 c 2 c

46. As previously noted, the water surface elevations are to be

k' computed using an implicit scheme. Thus, in writing the difference form

of the continuity equation all spatial derivatives are taken at the new

time level (n+1) . Equation 34 becomes

t,+ 1 n
-c 1 I / + \n+1- uhy )n+l- (vhx )n+l + (vhx )n+l

At KuY -U T+1 +E / n+

+ vhx )n"l (Vhx)fl1 - (uhy,)n+ + (uhyN)n+1 0 (39)

47. In the x and y momentum equations, all terms are taken at

the old time step except the water surface slope term which is computed

at the new time step. Therefore, the difference form of the x and y

momentum equations becomes

11n+1 / n /n1 '
Athc - h)c (h_.n yn+l yn+l . + (n+l

A ,E W ~ NS

Ij'+ Fn (40cc

i;'fill hv n+ -~(hv)• _hg[lp_.n F_ i• \.~ •n+l±' +1 /\<x n+1 ( \n+1]

A•v) t : ' )c [ ,~'E. (\~ +w •~)N - \VsJ

+ Gn

c (40)

7'i .34
'E-
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where F and G contain all other terms in Equations 
35 and 36, respec-

tively. The difference forms of F and G are

F=-~ (hu 2Y - huvx) - hu 2Y - huvx,) + (huvx, - hu2 y)

-(huvx, - hu 2 y )1j ( 0 )c 11(payl)E - (ýay) -(PaYE)

+9(h~)~~~E2 ~ u~ E(u J, + (uyý)]

) xh j fuy ) -(~ ) uy

L ) (u E) -( (uU~ E ()NE + ( uyý)]S

/D hyh

S(~ ) -(uy'). uEN + cuO

Yuy + +

D /hD +
+y /y0 +(u

[-( x x) + u )N I (ux)S ] + -(ux

SI //hD

(ux )NW + (uxn~) + (ux,) - NE ux)0 + (ux)

+(X~c(u~)S+L au
-~ gu U2+V2  + fhvEN (42

andux)E UX S

T1)N + (XONN (uxCc 35

[ ~ ~ ~ ~ ~ ~ ~r . ........................



1[(h2 - 2 h +(uy-h 2 xG c -j-[( v x huvy) \hv x4 -uvk,/ + \ y l hvx

- huvy - hv 2 x) o (P) x (Pxi - (x)

+ (Pxj ()L(x)E +(px) +(px )

+ 1 (v (D Y)l)E - (vi ) - vy)

c EEvi - (Cy - N (~ + ( vyýS]

()wi~ [(Vy)T - (vy l)W -vy ý)N + (vy) ]W

+( STh, [vi) r (vy)~ , (vy) + (vy~

~ (~~E -vx, + +(vx) + (vx)- (vOSE]

+(DVh)+(Vx) (vx 9I [x SW] sin c

I ~~+ V / +Jc T w ) W

t.. -.-. E V,>k



48. Consider the cell below

IN

I°I

Frum an inspection of Equation 39, it can be seen that one nceds (uh)

and (vh) on the cell faces at time level (n+l) in order to solve for

the water surface elevation at the center of the cell. From Equations 40

and 41, one can determine (hu)n+l and (hv)n+l at the cell corners.

From these values one can determine values on the faces by averaging,

e.g.,

(hu)n~1  [hu )i + (hu)n+1]/
n NE SE

Now if one substitues into Equation 39 for the values of (uh)n+l and

(vh) n+ on the faces (from Equations 40 and 41 with appropriate averag-

ing) an equation containing only t at the (n+l) time level results.

This equation is then solved for c by using the Accelerated Gauss-

Seidel solution technique.

49. After the water surface elevation at the center of each cell
n+l n+1

is determined at the (n+l) time level, values of u and v at

the cell corners are explicitly determined from Equations 40 and 41

using the new ý's at the (n+1) time level. It might be noted that

the expressions for F and G in Equations 42 and 43 are only computed

once during each time step. These values are then used in first the

iteration on the water surface and then in the velocity computations.

50. In the computation of j , u , and v , the density is

taken at the old time level. Its value at the new time level is computed

from the equation of state relating the density to the salinity at the

new time level. New salinities are computed from an explicit representa-

tion of the salt transport Equation 37. The difference form becomes
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(hs); (, [ u y, n
c_____ C - hs '-v'-- husy, hvsxT, + hvsx~

At - • sn E Wl)

- husy•) - (hvsx• - husy') 1+ j (hExY) (SI)

(hExYn)

+( ~S yý) - (WY~[ (si & (y ) NW(s )+(sY ) sw (s-•---h--

IE(• •hx
- ( )+�-(Sx)s+ ( sn)s - (sY< )N + s SS] 1+

s- (sx + (sxy (+

L NE +" (sx)NW \NN - sx) - [ - sxT)(ss)x(4

51. In summary, the computation cycle is as outlined below.

Step 1: Compute the terms labeled F and G in t',e x and
y momentum equations at the cell corners f~. Equa-
tions 4Z and 43.

Step 2: Using the Accelerated Gauss-Seidel solution technique,
implicitly solve for the water surface elevation at

the center of each cell.
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Ste 3:Using the new water sraeelevations and vle

of F and G from Step 1, explicitly solve for the
velocity components, u and v , from Equations 40
and 41.

Step 4: Explicitly compute the salinity field from Equation 44.

Step 5: Using the new salinities from Step 4, compute the
water density from the equation of state.

Step 6: Update all arrays, increment the time, and return to
Step 1.

52. This solution scheme removes the gravity wave stability

criterion from consideration, although it should be noted that other

stability criteria still control the size of the computational time step

allowed. These criteria have not been derived for the transformed equa-

tions; however, for the cartesian form of the equations they are

At < min , Ax

[t< i AX2  AY 2
2Diin xx yy2D/1 (45)

In other words, the time step must be small enough so that a fluid I
particle does not move more than one grid spacing during the time step.

This basic criterion is not nearly as severe as the gravity wave criterion

At < min(AxL (46)

for most practical problems.

Boundary Conditions

53. Three types of boundaries are allowed in VAHM; walls, oceans,

and rivers. Wall boundaries are characterized by the specification of a

no-slip condition, i.e., the velocity components u and v are set to
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be zero at walls. Although, physically, the flow must be zero at a

solid boundary, slip condicions on the velocity at a wall often give

more realistic results if the grid spacing is too large near the wall.

Slip conditons would be implemented by setting the normal component of

the velocity equal to zero with the tangential component computed from

the expression for zero vorticity. At the present time, only the no-

slip condition is allowed in VAHM.

54. Ocean boundaries are characterized by the specification of a

time varying water suface elevation at the boundary. Velocities on the

ocean boundary are then computed from a simplified form of the momentum

equation where the diffusive terms have been neglected. One-sided

differences are used to replace derivatives that need points outside the

field. As an example, consider the computation for v on an ocean

boundary that lies on the bottom of the transformed plan.

I I I

VELOCITIES COMPUTED HERE

0(t) PRESCHIBED
n+l n hnn (• c n+l / n+l f(x\1+1

v - hv - /hgpAt - x + x + 2 n+
c hn+l c c JPo0  E (k T) -)

c

-2 •X•X )n+l] t hvuy - hvvxE)n - hvuy hvvx n

+ 2 (hvvx, - huvy)n - 2 hvvx huvy )n (47)

An inspection of Equation 47 reveals that in order to be able to compute

n+l n+i
v values of at the center of the first cell must be known.C

These are determined by setting them equal to the boundary values of ,
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but lagged by the time required for a free surface gravity wave to

traverse the distance from the boundary to the interior point, eggs, (48)

~NEt E E(t- h)

/*1% 
1

55. When the flow is directed into the computational field, the

boundary condition on the salinity is prescribed as that of the ocean.

However, when the flow is moving out of the computational field, the

salinity at an ocean boundary is set to be equal to its value at the

next point inside.

56. River boundaries are characterized by the specification of

the velocity. The salinity is set to be zero and the water surface

elevation at the center of a river boundary cell is computed as in any

interior cell.

41J
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PART V: MODEL APPLICATIONS

57. In order to demonstrate the versatility of VARM in its ability

to model flows in rather general multiply-connected regions containing

both river and ocean boundaries, three applications have been made using

the physical geometry in Figure 3.

Generation of Boundary-Fitted Coordinates

58. The first step in the application of VAHM is the generation

of the boundary-fitted coordinates. This is accomplisbed through a

coordinate generation code developed by Thompson. Output from the co-

ordinate code is saved on a file for subsequent use by VAHM. The basic

input to the coordinate code is the specification of the (x,y) co-

ordinates of the boundary points noted on Figure 3. Although various

degrees of coordinate control can be exercised, the boundary-fitted

coordinates shown in Figure 3 were computed using no control. Figure 4

illustrates the actual computational grid network that is used in VAHM,
where velocities are computed at the cell corners and salinities and I
water elevations at the cell center. However, it should be remembered

that VAIHM requires that the (x,y) coordinates be specified at not only
the corners and center of a computational cell but also on the cell

faces. The reason for this is because of the fJ ly geometrically con-

servative transformation of the mass, momentum and .,.alirnity equations to

be solved. With such a transformation, one should never use averaged

values of the geometrical derivatives since this can result in the loss

of conservation of the properties being computed. This is the reason

for computing the coordiniate system illustrated in Figure 3.

59. The coordinate system plotted in Figure 3 was the third ac-

tempt at generating a useful grid system. Through the movement of bound-

ary points and/or coordinate control one attempts to compute boundary-

fitted coordinates such that the grid spacing does not vary rapidly and

such that (t,n) lines never approach being parallel to each other. The
coordinate system in Figure 3 satisfies both of these criteria and thus
is considered to be adequate.
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Flow Through Problemn

60. Before applying the model for the case of time varying bound-

ary conditions, various "debugging" applications were made. Perhaps the

most important of these was a "flow through" problem. In a flow through

test all velocities are set to be equal, but non zero, (even on the

walls), the water surface elevation is constant, but non zero, over the

field, and the salinity is set to be a non zero constant over the field.

If the coding is correct and all external forces have been set to zero,

the initial state should never change. Such tests have helped to correct

many errors that might otherwise have gone undetected.

, Case I - Sloping River

61. The first application was one in which a river boundary with

a constant velocity of 0.4 ,n/s was prescribed at the top with the water

surface elevation at the bottom being held constant at 1.0 m. The bottom

was assumed to have a slope of 0.005 m/grd cell and the initial depth was

set to be 11.0 m. The initial velocity field was set to zero as was the
•i, m1/2/salinity concentration. The Chezy coefficient was set to 35 m and

a time step of 600 sec was prescribed. These plus other input data are

presented in Table 1.

62. Three separate runs were made in which the influence of using

a form of Roache's second upwind differencing for the corvective terms

in the momentum equations (CONVEC = UPWIND) as opposed to centered

differencing (CONVEC . CENTER) and the influence of increasing the di-

agonal cormponents of the eddy viscosity from 0.01 m 2/s to 10 m 2s were

investigated.

63. Figures 5-8 illustrate the type of phenomena that can occur

when using centered differences to represent the convective terms. After

12 hours, a "zig zag" pattern has become well defined. Figures 9-12

demonstrate the effect of using a form of Roache's second upwind differ-

encing. Although a slight pattern can be seen after 12 hours, it isn't
lit nearly as pronounced as when using centered differences. Figures 13-16
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Table I - Input Data to VAuM

Variable Case 1 Case 2 Case 3

At (sec) 600 600 600

D (mi2 /s) 0.01 10 10
xx 10

YY 10

2
I) (m /s) 0.0 0.0 0.0

2

xy

2
E (m Is) 0.01 0.01 0.01

y

C (ml /2s) 35 35 35

Initial depth, m 11.0 11.0 11.0

Bottom slope/cell 0.005 0.0 0.0

CONVEC CENTER
UPWI~ND UPWIND UPWIND 4

Initial Velocity, m/s 0.0 0.0 0.0

Conv Tolerance 0.005 0.005 0.005
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show that by increasing the eddy viscosity, along with upwind differenc-

ing, essentially all of the "roughness" in the computed velocity field

has been removed. Figure 17 presents a time history of the water surface

profile along the • = 6 line.

Case 2: Closed at Top, Ocean on Bottom

64. The second application was for the case of a closed boundary

at the top and an ocean boundary on the bottom. Once again the initial

velocity and salin ty fields were set to zero and the initial depth was

11.0 m. Unlike the previous application, the bottom was assumed flat.

65. The water surface elevation curve, relative to a depth of

10 m, presented in Figure 18 was prescribed at the ocean boundary along

with a salt concentration of 30 ppt. As in the previous application,

CONVEC = UPWIND, D = D = 10 m2/s , At = 600 sec and the value of

the Chezy coefficient was 35 m 1 s (see Table 1).

66. The vector plots of the flow field presented in Figures 19-30

illustrate quite clearly the effect of the time varying ocean boundary

which first drives water into the field with water flowing out on the ebb

portion of the tidal cycle. The channelizing effect of the island is

also quite clearly shown. Figure 31 presents a time history of the water
surface profile along the =6 line, whereas Figures 32, 33 and 34

are plots of the water surface at particular points.

67. From an inspection of Figures 26-30 it can be seen that an

oscillation in Lhe flow field has developed in the upper portion of the

modeled area when the flow is pushed toward the boundary. This is

probably due to the influence of the upstream boundary, although the

tolerance on the iterated water surface may also be a factor. The con-

vergence tolerance was set to be 0.005 m in all the runs.

68. Figure 35 demonstrates the movement of the salinity field

over a tidal cycle. As Lhe flooding cycle of the tide curve is experi-

enced, saline water at a concentration of 30 ppt moves into the region.

As the flow reverses at the ocean boundary (see Figure 23), the salinity

at the boundary is set to its value immediately inside to reflect an
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outflow boundary. This is the reason for the decrease in salt concentra-

tion at the boundary after 5 hours. Figure 36 gives a time history of

the salinity at a point about 12 miles from the ocean boundary.

Case 3: River on Top, Ocean on Bottom

69. The third application was identical to the second except that

a river boundary with a constant velocity of 0.4 rn/s in the fl-component

was assumed at the top as opposed to the closed boundary in Case 2.

70. Figures 37-49 present "snap shots"' of the computed flow field

for 16 hours. With the flow field initialized to zero at a constant

depth of 11.0 mi, it can be seen that the influence of the incoming tide

and the river meet after about 4 hours. As in the previous application,

in oscillat~ory pattern occurs in the upper portion between hours 8 and4

12. However, as revealed in Figures 48 and 49, this irregularity is re-

moved as the influence of the ebb portion of the tidal cycle is felt in

the upper reach.

71. Figure 50 is a plot of the time history of the water surface

profile along the =6 line and Figures 51-53 give the time history

of elevations at particular points. Figure 54 presents the time history

of the salinity at a point about 12 miles from the ocean boundary. Com-

paring Figure 54 with Figure 36, it can be seen that the salinities are

essentially the same after 16 hours. Therefore, the influence of the

river has not been felt in the lower reach after this length of time.

Computing Costs and Times

72. Previously it was noted that the major advantage of the FEM

over the FDIJ was its ability to more accurately handle irregular bound-

aries, whereas its major disadvantages were increased complexity in j~

coding and perhaps increased computational costs. A finite difference

model such as VAI*1 which makes computations on a boundary-fitted co-

ordinate system removes the boundary representation advantage of the FEM

in many problems. Although no direct comparison can be made between
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VAHN and the FEM in the areas of complexity of coding and computational

costs, some rather general comparisons can be made.
Ilk73. Since VAHM's computational scheme retains much of the charac-

ter of explicit finite difference schemes, it would appear that VAHII's

coding should be much less complicated than any finite element model.

With simpler coding, future modifications should be much easier to make,

e.g. flooding of boundaries, higher order representation of the advective

terms, etc.

K74. An approximate comparison of computing costs can be made with
13

a vertically averaged finite element model called RMA-2 .This is a
flow model that does not include the modeling of salinity and its effect

upon the flow field. The model was developed by Resource Management

Associates and is currently being used by the Estuaries Division of the

Hydraulics Laboratory at WES.

75. The time step employed in the previously presented runs of

VARM was 600 sec, which compares with a time step of perhaps 30 sec that

could be employed in a fully explicit finite difference model. With a

computational grid that contains 363 velocity points (1365 coordinate

points) 12 hours of computations required 43 sec of CPU time at a cost of
$21 on a CRAY I computer for the first application presented. The second

and third applications required approximately twice as much CPU time at

about twice the cost. However, later experimentation with VAHM revealed

that stable computations could be achieved using a time step of 1500 sec.

Therefore, if such a time step had been used in the cases presented the

costs would have been reduced by a factor of about 2.5. The increased

time of the last two applications was because of the more rapidly varying

water surface. Only one or two iterations each time step were required

to achieve a convergence tolerance of 0.005 in in the first case, whereas *
an average of seven or eight iterations were required in the last two

applications.

-76. As a comparison, RMA-2 applications to grids containing ap-

proximately the same number of net points for a 12 hour tidal cycle, using

an 1800 sec time step, cost about $40 on the same CRAY I computer. 4

However, it should be remembered that RMA-2 makes computations for only
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the flow field, whereas VAHM also computes the salinity field and its

coupling with the flow field through a relationship with the water

density. Based upon these approximate costs, it woul,' appear that the

FEM, as reflected by RMA-2 costs, is about 3 times more expensive than

VAHM for tidal problems and perhaps 6 times wore expensive for river

problems. As a final note, it is believed that after VAHM has been

"cleaned up" to better utilize the vector processing features of the

CRAY I its computational costs will decrease significantly.

'f4
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PART VI: SUMMARY AND) RECOMMENDATIONS

77. A numerical model for computing vertically averaged velocities

and salinity plus water surface elevations has been developed. By em-

ploying the concept of boundary-fitted coordinates, irregular boundaries

can be accurately modeled in either simply or multiply-connected regions.

Even though the numerical grid is a nonorthogonal curvilinear grid in the

physical region being modeled, all numerical computations are carried out

in a transformed rectangular grid with square grid spacing.

78. A feature of the model is the particular solution technique

employed to numerically solve the governing equations. A combination

implicit-explicit finite difference scheme, patterned after work byA

Edinger and Buchak in their development of a laterally averaged reser-

voir hydrodynamic model, has been developed to remove the speed of a

gravity wave from stability restrictions on the computational time step

while still retaining some of the advantages of explicit schemes. With

such a scheme, the water surface elevation is computed implicitly using

the Accelerated Gauss-Seidel solution technique while the velocities and

salinity are computed in an explicit fashion.

79. The model has been developed for general applications. Any

number of river and/or ocean boundaries can be arbitrarily located on

the transformed rectangular plane, as can the placement of islands in

the interior of the computational field. Even though a great deal of

generality does exist, there are restric-tions. For example, only no-slip

boundary conditions are currently treated at solid boundaries and no

flooding of those boundaries is allowed. '

80. Although VAHM has been developed to the point where results

from the test applications presented are encouraging, additional work is

needed before VAHII can be considered fully operational. Recommendations

for additional development are listed below.

- In order to expand VAHM's capabilities into the water quality
area, it is necessary to devise a scheme for solving the
transport equation that accurately transports a "spike" concen-
tration distribution. The present scheme employed in VAHM for

computing salinity is sufficient when distributions are fairly4I'
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smooth. However, it will not do a good job on a spike distri-
bution. Therefore, a major task to be accomplished is themodificatiott of VAHM to allow such computations to be ac-
curately made.

- As previously discussed, at the present time only no-slip
conditions are allowed at solid boundaries. Unless a small
grid spacing is used nrzar the boundaries, slip conditions may
be more appropriate. The slip boundary conditions will be
determined ay requiring the normal component of the velocity
and the vorticity to be zero at. a wall. Many of the checks
in the basic model have been coded to allow for slip condi-
tions; however, the- slip subroutine remains to be developed.

The capability of handling flooding boundaries is needed
in VAHM. Some ideas for incorporating such a capability into
VAHM have been considered in the basic coding.

- VAIDI uses the Accelerated Gauss-Seidel solution technique to
implicitly compute the water surface elevation. At the pres-
ent time, a constant acceleration parameter is employed. The
use of variable acceleration parameters for the purpose ofspeeding up the computations should be investigated.

- At the present time, a 2D vector plotting program developed
by S. A. Adamec of the Hydraulics Laboratory at WES has been
coupled with the grid generation code and VAHM to provide
plots of the velocity field. Additional plotting capability
needs to be coupled with VAHM.

- As noted, the basic coding has been written to 31low for an
extremely general representation of a physical problem, e.g.
specification of islands, r.iver inlets, etc. However, many
of these options have not been "debugged." In adlition,
although VAHM is being run on a CRAY-I computer no attempt
at "cleaning up" the code to take advantage of the CRAY's
vector processing has been made.

5O
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Figure 46. Velocity field after 10 hours with an ocean and a
river boundary
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Figure 47. Velocity field after 12 hours with an ocean and a
river boundary
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Figure 48. Velocity field after 14 hours with an ocean and a
river boundary
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Figure 49. Velocity field after 16 hours with an ocean and a

river boundary
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APPENDIX A: NOTATION

A.. Eddy diffusivity tensor
ij

A.. Eddy dispersion tensor
13

a Constant

Chezy coefficient

d Constant, distance

D. . Molecular diffusivity
ii

Dx,D Diagonal components of eddy viscosity tensor
xx yy

Dx,D Off diagonal components of eddy viscosity tensor
xy yx
E,Ey Components of eddy dispersion tensor

f Arbitrary function
fxfyf•,f Derivatives
x y n'r

g Acceleration of gravity

h Water depth

J Jacobian of the transformation

P,Q Coordinate control functions

P Pressure

"Pa Atmospheric pressure

r,O Cylindrical coordinates

s Salinity

T Temperature

At Time step

u,v,w Components of velocity

ui,u.,uk Tensor notation for velocity

u. Time averaged velocity

U! Random time varying component of velocity1

u. Time and depth averaged velocity1

u! Random depth varying component of time averaged velocity

v Wind speedw

x,y,z Cartesian coordinates

,fn Boundary-fitted coordinates

AxAYAtAn Spatial grid steps

Al

.~~~~2~ EL~~__ t.A- 1 ¾



p Water density

PO Reference water density

Pa Density of air
n Molecular viscosity

Turbulent viscosity tensor
j M

6i. Eddy dispersion viscosity tensor

# Water surface elevation; arbitrary variable

T., Stress tensor

Eijk Cylic tensor

3.. Kronecker delta13

a/at Time derivative

a/axi,3/axj Space derivatives

T, s Components of bottom shear stres
x y

TB 'TB Components of bottom shear stress/c

x y

Ui Wind direction

A Latitude of center of modeled area

w Earth's angular velocity

e2
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In accordance with letter frm DAEN-RDC, DAEN-ASI dated
22 July 1977, Subject: F~acsindle Catalog Cards for
Laboratory Technical Publications, a facsimile catalog
card in Library of Congress MARC format is reproduced
below.

Johnson, Billy H
VAIHM - A vertically averaged hydrodynamic model

using boundary-fitted coordinates / by Billy H. Johnson.'I Vicksburg, Miss. : U. S. Waterways Experiment Station
Springfield, Va. available from National Technical
Information Service, 1980.

52, [561 p. : ill. ; 27 cm. (Miscellaneous paper -
U. S. Army Engineer Waterways Experiment Station ; HL-80-3)

Prepared for Assistant Secretary of the Army (R&D),
Depsvtment of the Army, Washington, D. C., under Project
I4A06il~lA91D.

References: p. 51-52.

1. Computerized models. 2. Coordinates. 3. Hydrodynamics.4. Mathematical models. 5. Numerical analysis. 6. Salinity.

7. VAHM (Vertically Averaged Hydrodynamic Model). I. United
States. Assistant Secretary of the Army (Research and
Development). II. Series: United States. Waterways Experiment
Station, Vicksburg, Miss. Miscellaneous paper ; HL-80-3.
TA7.W34m no.HL-80-3
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